
AD-ALDO 180 MARYLA14D UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/G 9/2
A FRAMEWORK FOR COMPUTER ARCHITECTURE.(U)
DEC So C A PERSY, L N DANNER, A K AGRAWALA AFOSR-78-3654

UNCLASSIFIED TRE7R AFOSRTR-8-086 NL

;AFO6R.Th81 w486/

TEVELs1

COMPUTER SCIENCE
TECHNICAL REPORT SRE

DTIC

UNIVRSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

S6 12 097 AgPpOV$d for publie teW

Technical Report- 97A December 1980

A FRAMEWORK FOR

COMPUTER ARCHITECTURE

By

Cornelia A. Persy
Lee N. Danner

Ashok K. Agrawala

-. .. AIR FORCE CF'I. OF SCITNTIFIC RESFARCIJ (AFSC
NOTICE OF TE . :: ;. :AL TO DLC
This teeh,,,;i ruviewc-d and iG
approved .cc ;r:2. te lA# AFR 190-12 (7b).
Distribut.,iol i anlixited.
A. D. BLOSE
Technioal Information Offioer

This Research was supported in part by the Air Force Office of Scientific
Research under grant AFOSR-78-3654 to the Department of Computer Science,
University of Maryland.

..- :., . -. L = .. - . .-.

. ~ ..- ~ 7

UNCLASSIFIED
SECURITY CiL IFI CATION OF THIS PAGE (I?.n Datse ntered),

J REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

R~ ~ '. 81,O 8 2. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

4TITLE (d Subtitle) 5. TYPE OP-ftiPORT &PER#0D COVERED

A FRAMEWORK FOR.COMPUTER ARCHITECTURE,

6. PERFORMINZy-.. - O

~7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Cornelia A., /Persy,'Lee N. Danner avr Ashok~ K. AOR7864'

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Department of Computer Science % RA OK NTNUBR

University of Maryland . , PE 61102F
College Park MD 20740 . 2304./A2
I I. CONTROLLING OFFICE NAME AND ADDRESS ".. 12- -RPOIT DATE

Air Force Office of Scientific Research/NM ,.iY E14ft9~
Boiling AFB DC 20332 'NUEROF PAGES; , '~

32 ,

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. ()ltsrelort) -

UNC LAS SI FIED

I 15a. DECLASSIFICATIONJDOOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (o1 this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in BlocRc 20, if different from Report)

IS. SUPPLEMENTARY NOTES

M9 KEY WORDS (Continue orn reverse side it necessary and IdentIy by block number)

20. AS3TRACT (Continue on reverse aide If necessary and Ilentlfy by block number)

This paper presents a framework for computer architecture which is based on the
principle function of a Computer to perform a mapping from some input into an
output. A set of recursive functions is developed to represent computer archi-
tecture at any desired level of &,tail. The definitions are insensitive to
whether the functions are realized in software, hardware or firmware. The
approach is illuctrated using examples.

FORMNDD JA ~73 1473 EDITION OF 1 NOV, 65 IS OBS OLETE u;:
SECUJRITY CLAS3,1

0
ICATIOsi OF Tss:S PA.;E r .tsr lEw-*~dt

..

Abstract

This paper presents a framework for computer architecture

which is based on the principle function of a computer to perform

a mapping from some input into an output. A set of recursive

functions is developed to represent computer architecture at any

desired level of detail. The definitions are insensitive to

whether the functions are realized in software, hardware or

firmware. The approach is illustrated using examples.

VI

V. -

'p1

TABLE OF CONTENTS

1. Introduction

2. A general overview

3. Architecture structure

3.1 The algorithmic structure

3.1.1 The information structure

a. Objects

l.Atomic objects

2.Primitive objects

3.Complex objects

b. Operations upon objects

l.Arithmetic / logic operations

2.Relational operations

3.Structure operations

3.1.2 The control structure

a. Interpretation and transformation of objects

b. Execution order of operations upon objects

3.2 The realization

3.2.1 Resources

a. Processing units and processing elements

1.One processing unit systems

2.Arrays of identical processing elements

3.Pipelines of different processing elements

. %4.Multi-processing units systems

5.Distributed systems

- -.- *.,t - -v-

* b. stor~age media

l.Regiaters

2.Random-access memories (RAM)

3.Contqnt-addressable memories (CAM)

c. Channels

3.2.2 Rules

a. Cooperation between resources

b. Communication between resources4

4. Formal definitions

4.1 Within the algorithmic structure

4.2 Within the realization

4.3 From the algorithmic structure into the realization

S. Examples

5.1 A matrix multiplication algorithm

5.2 A sorting algorithm

6. Concluding remarks

* References

1. Introduction

The term computer architecture has been used since the early

days of computers to imply the study of the structure of computer

systems. These studies have focused on the organization and

interconnection of the components of the system. The complexity

of both the organization and the interconnection has been

increasing steadily with developments in hardware technology.

Software technology has also increased the complexity, size, and

diversity of problems that use the facilities of computer

systems. These combined growths have lead to a need for

organizing the software and hardware parts of problem solving

into a framework suitable for describing all users' interactions

with the system. In this paper we present such a description

whose resulting formal structure comprises a Framework for

Computer Architecture. It is suitable for describing existing

systems, usable in developing new systems, or in upgrading

existing systems to take advantage of new technologies.

The emphasis in this framework is the problem solving aspect

of the computer system, where a solution is developed from

requirements using a process that consists of multiple

translations or mappings. For example, to carry out a matrix

inversion, the first step is to select an algorithm. A data

structure for the problem has to be selected and a programming

language chosen. The algorithm is then expressed in the

programming language. The program is compiled to generate a

relocatable code which is combined with necessary library

routines to produce the absolute code. At the time of the

2

execution, the absolute code is loaded into the storage and the

individual machine instructions are executed by invoking the

appropriate sequences of microinstructions. Thus, the term

computer architecture is used in this context to refer to the

organization and interconnection of the hardware/software

resources available at any level of this multiple level mapping

process. Furthermore, the framework presented here provides a

precise definition of computer architecture that delineates the

various resources, the many functions they perform, and the

controls necessary to enforce cooperation between them.

This definition of computer architecture could be applied to

the analysis of distinct components of every specific

architecture to allow optimization of each of these parts

independently. Such an approach uses multiple recursive levels

to represent this partitioning problem.

The theory is based on the principle function of a computer

to perform a mapping from some input to an output. The defined

functions (or mappings) are coextensive with the operations

performed within the computer. Each operation allows recursive

decomposition to represent functions of the subsystems, units,

logical components within the units, etc. The abstract nature of

the theory is insensitive to whether the functions are realized

by hardware, software, or firmware. The recursive definitions

allow one to decompose an operation to any desired level of

detail, or to form compositions of detailed operations until one

reaches an operation that embodies the entire architecture.

The given examples, a matrix multiplication and a bubble

.. --- - - - - --

3

sort, are explained in detail. Both examples were coded in

Pascal and were executed on the Univac 1100/42 system.

2. A General Overview

Computer architecture is characterized by the algorithmic

structure and the realization. The algorithmic structure

provides an organization for the data elements used to facilitate

manipulation upon them. In general, a given problem is expressed

in a coded form using objects (data types and data structures)

and operations upon objects. Furthermore the interpretation and

transformation of these objects and operations as well as the

execution order of operations is contained in the algorithmic

structure. The realization of a computer architecture is given

by the type and number of the resources and a set of rules for

communication and cooperation between them. In this paper we

roughly distinguish between main hardware resources: processing

units and elements, storage media, and channels. However, the

emphasis lies on the cooperation rules between resources

determining how the resources work together, and not on where the

separations between the resources of the realization are chosen.

A set of recursive functions is developed to represent

computer architecture to any desired level of detail.

3. Architecture Structure

The following figure depicts, graphically, the algorithmic

structure and the realization with each partioned into several

levels of detail.

4

Atomic

F--objects - -Primitive
--Complex

Information
Structure Ar ithmetic/Logical

I-prations- Relational

Structure

~tructure
--Interpretation and

Transformation

--ontrol
Structure FSqeta

L-Execution--
Order

_Parallel

Computer
Architecture -One Processing Unit

Arrays of Elements

.-Processing Pipelines
U Uits an
Elenents ultiprocessors

Distributed

r--Registers

-Resources- -Storage --- R A M
LCA M

-Realization- -Selector
L-Channels-d-Mul tiplexo r

'--Block multiplexor

-ooperation

LRules-
-Comm~un ica tion

5

3.1 The Algorithmic Structure

The algorithmic structure defines a set of abstract data

types and data structures, which will be called objects, and the

operations upon them. Furthermore it includes the specifications

for the interpretation and transformation of objects and the

execution order of operations upon them.

3.1.1 The Information Structure

The information structure of a digital computer architecture

is composed of these objects and operations, while according to

Shannon (1) information is a measure of one's freedom of choice

when one selects a message, this term is more often used in the

sense "the meaning associated with data" (2), and computers

basically perform manipulations upon data elements. In order to

facilitate these data manipulations, organizations for the data

are defined as follows:

a. Objects

Within a program the valid data types and data structures

are composed of the terminals of a language.

1. Atomic objects are the terminals of a language, like

letters, digits, and special symbols.

2. Primitive objects (data types) are composed of atomic

objects and a simple organization for their range of

validity is given. For example, numbers, characters,

and Booleans are primitive objects.

3. Complex objects (data structures) provide a

6

superordinated ranking for the primitive objects.

Complex objects are composed of atomic objects and

primitive objects with a more powerful organization.

For example, arrays, stacks, queues, records, and files

are complex objects.

b. Operations upon objects

Operations are the rules for data manipulation. An operation

can be defined as the following mapping (or function):

m:{finite input set of data} -> {finite output set of data)

We basically distinguish between arithmetic/logic and

relational operations upon primitive objects and structure

operations upon complex objects.

1. Arithmetic/Logic operations

Operations are described by expressions, which consist

of operators and functions applied to the primitive

objects. Arithmetic operators are: + , - , * , / and

the corresponding functions or mappings are SUM,

DIFFERENCE, PRODUCT, and QUOTIENT. Logic operators

are:A,V,1, and the corresponding functions are AND, OR,

and NOT.

2. Relational operations

They operate on primitive objects to produce a result

that has the value true or false. Relational operators

are: >,>=,<,<=,=,<>, and the corresponding functions

are GREATER THAN, GREATER THAN OR EQUAL, LESS THAN,

LESS THAN OR EQUAL, EQUAL, or NOT EQUAL.

4 -I -

7

3. Structure operations

Structure operations are performed on complex objects,

like arrays, stacks, queues, records, and files. The

describing expressions consist again of operators and

functions applied to the complex objects. For example,

typical stack operations are push and pop, which are

composed of arithmetic expressions and the functions

are: fl(stack) = push, f2(stack) = pop, respectively.

Structure operations for records and files are

typically open, close, read, write, etc. Selecting an

array element by means of a subscript is also a

structure operation.

3.1.2 The Control Structure

The control structure defines the interpretation and

transformation of objects as well as the execution order of

operations upon objects.

a. Interpretation and transformation of objects

The efficiency of a program is dependent upon the

organization used for the objects to be processed. Therefore

it is necessary to provide a suitable mechanism for the

storing and processing of the objects. We can thus refer to

the hardware elements which store the objects during program

execution as the storage structure of a computer

architecture. For example, in the von Neumann architectures

it is often desirable to replace an object with the result

- :" , , .; , , , ' -. Z I7 Z Y

of an operation such that the result can be accessed as an

operand for some further operation. In this case the

variable mechanism (<name>,<value>) receives the new value

using an assignment operator. Conversely, in the functional

architecture (5) that deals with an expression by evaluating

its subexpressions, the result is pushed back onto the top

of the stack automatically, without requiring an assignment

operation. The use of assignment, as part of the control

structure for transforming objects, is further described in

Example 5.1

b. Execution order of operations upon objects

The execution speed of a computer system is dependent on the

speed of the technology and of the execution order of

operations upon objects. Both sequential and simultaneous

executions are considered.

Sequential. Von Neumann systems don't have any program

structures or data structures which are recognizable by

hardware. Consequently, in order to achieve parallelism, it

has to be derived from the program structure and is normally

done during the translation process using the language

declarations that define the information and control

structures of the program. The algorithmic structure of a

von Neumann system is stamped by the von Neumann variable

mechanism. A von Neumann variable is a pair (<name>

<value>), where <name> denotes the address of a storage

cell and <value> specifies its contents. The value of a

S- 117

9

variable can be changed arbitrarily often during program

execution. A variable always has a defined value after it

is once initiated. The control structure is strictly

sequential.

The main hardware resources of a von Neumann system

are: a CPU, a storage, and a connection for transferring

words between the CPU and the storage. Backus called this

connection the "von Neumann Bottleneck" (4). In order to

avoid this bottleneck, Backus proposed to totally get rid of

the von Neumann variable mechanism, which leads to

functional or applicative programming (5). Variables or

assignments don't exist and one deals only with expressions.

Giloi (3) takes the opposite approach and augments the

variable mechanism by means of structured data sets. The

augmented variable definition is the triple (<name> I

<structure> , <value>). The special information unit

containing the structure specification is called a variable

descriptor. Variable descriptors may be:

- additional data types (like in tagged architectures)

- a level between instructions and data (like in pipeline

machines).

Parallel Execution. One way of increasing the efficiency of

a computer system, independent of faster technology, is by

achieving a high degree of parallelism (3). Parallel

executable activities could be:

- arithmetic operation (operation level)

- assignment statements (statement level)

10

- concurrent process (task level)

- user programs (job level)

The basic features of parallelism are dependent on the

structure of the programs and objects. Implicit parallelism

exists in many serial programs and can be recognized and

exploited by investigating the control structure. For

example, operations or sequences of operations that are

executed repetitively and are independent in their order of

execution are candidates for parallel execution (see Example

5.1).

For execution, it would be useful to alter the standard

von Neumann variable mechanism by introducing eventual value

variables, which can be temporarily undefined.

In explicit parallelism the program structures or the

data structures are specified in a way that parallel

execution is explicitly given and does not have to be

derived from the program structure. We can distinguish

several principles:

- parallel program structure (user specified within the

program)

- independent data structure (for example, a file

explicitly declared read only)

- ordering independent data sets in the form of an array

- self-describing information units

- self-identifying data.

Additionally there are the following combinations of

sequential and parallel control flow in von Neumann systems:

11

- several sequential control flows at a time

- sequential control flow but concurrent execution of

operations in each step

- sequential control flow with associative access to data.

3.2 The Realization

Giloi (3) claims that one important step in increasing the

efficiency of a computer architecture can be achieved by a high

degree of parallelism. In the algorithmic structure, definitions

of abstract data types and operations upon them are required.

Furthermore a program structure which grants explicit parallelism

and variations from the strictly sequential control flow in von

Neumann systems are needed.

Besides this, an important task lies in finding a close

match between the control structure of an algorithmic structure

and the cooperation rules for the resources of a computer

architecture. The control structure determines the execution

order of the operations upon objects, and the cooperation rules

establish the principles according to which the resources are

working together.

In general the realization of a computer architecture is

lgiven by the type and number of the main resources as well as the

rules for communication and cooperation between them (described

below).

X.

12

3.2.1 Resources

a. Processing units and processing elements

A processing unit is an autonomous hardware resource which

controls the program flow and executes the data transferring

operations as well. In contrast to this, a processing

element is only capable of executing the data transferring

operations without controlling the program flow (examples

are arithmetic/logical or floating point elements).

According to the number and arrangements of processinq units

and processing elements, one can distinguish the following

systems:

1. One processing unit systems

These are the conventional systems with one central

processing unit (CPU). Special I/O devices are not

taken into account. All von Neumann systems are. of

this type.

2. Arrays of identical processing elements

The processing elements are arranged in the form of an

array. This means, each element is only connected to

its nearest neighbors. (The elements perform identical

operations at a time.)

3. Pipelines of different processing elements

In general, pipelines are a one dimensional arrangement

of processing elements. But there are also pipelines

of processing units. Normally the elements of a

pipeline perform different operations at a time.

13

4. Multi-processing units systems

These systems consist of more than one processing unit.

In the case that all processors have the same hardware

but may take different functions within the system,

they are called homogeneous otherwise they are called

inhomogeneous. An asymmetric system is characterized

by processing units performing different functions.

Processing units within a symmetric system have

interchangeable roles in the system.

5. Distributed systems

Distributed systems also consist of more than one

processing unit; but in contrast to the

multi-processing systems there is not a central

supervisor, the control functions are distributed over

the processor-storage-pairs of the system.

b. Storage media

A storage is a device used to retain information (data and

programs) until it is used during execution. Note that in

this paper the terms information and data are used loosely

and not necessarily within the information theoretic

context. According to their degree of complexity, storage

media range from single registers to content-addressable

memories (6).

1. Registers

A register is a simple device, consisting of a group of

binary storage cells. Registers provide storage for

units of information (bits, bytes, words, etc.). With

14

the addition of logic elements, registers can be

transformed into counters, adders, shift-registers, and

so on.

2. Random-access memories (RAM)

Random-access memories are a collection of registers

that are addressable and have fixed or variable

lengths. Every register is randomly accessible for

reading or writing during any cycle. A subclass of the

random-access memories are the read-only memories

(ROM), storage devices that allow the read operation

only. ROM's are usually faster and less expensive than

standard RAM's.

3. Content-addressable memories (CAM)

A content-addressable memory allows access to a word by

some portion of the content of the word rather than by

its physical location. A key is specified as part of

the input, and all words in memory that contain the key

are available for reading or writing. All registers of

the memory are accessed simultaneously and in parallel.

CAM's are more expensive than RAM's because each cell

must have storage capability as well as logic circuits

for matching its content with an external argument.

c. Channels

Channels, also called I/O processors, provide a path for

data-flow between I/0 devices and storage media as well as

the control-flow between I/O devices and processing units.

Multiple devices may be connected to each channel. A

15

selector channel can service only one of its devices at a

time. These channels are normally used for high-speed I/0

devices. A multiplexor channel is able to simultaneously

service many devices, but it accomplishes this only for slow

I/O devices. A block multiplexor channel establishes a

compromise between a selector channel and a multiplexor

channel. It services only one device at a time but switches

to perform an instruction for another device.

3.2.2 Rules

a. Cooperation between resources

A computer architecture consists of many resources, each

capable of performing some part of a problem solution. In

the algorithmic structure and the realization there is a

potential for communication between parts of the information

structure, the control structure, or the resources. Some are

possible some are not; the possible interactions are

delineated by the cooperation rules. For example, the

development of an algorithm (information and control

structure) assumes the existence of resources upon which the

solution will be developed. The cooperation rules establish

the configuration of the resources. They essentially

determine how the resources can be used together and thus

permit the communication among them. This is indicated in

the algorithmic structure. For example, the operation i:=i+l

calls for an adder, and the fact that access to this device

is possible is specified by the cooperation rules, whereas

- - -- w---wX.

16

the controls and physical transmission are done by the

communication rules.

b. Communication between resources

Communication between resources is controlled by protocols

that manage the exchange of information between them. After

a certain path among resources is defined by the cooperation

rules, the protocols allow communication to be initiated,

executed, and terminated. The actual communication is the

transmission of information that includes both the data and

the control signals.

As we have seen in the example given for cooperation

rules a transmission is necessary to send the operands to

the resource performing the operation (adder) and return the

results. Control signals are also necessary to determine

whether the adder is available (free) and to determine when

the result is ready.

17

4. Formal Definitions

Formal definitions are presented describing the

operations within the algorithmic structure and the

realization, and a mapping from the algorithmic structure

into the realization.

We like to view these operations as a function (or mapping)

with the parameters input, output, control signal in,

control signal out, status, and time, as shown in the

following picture:

Control Signal In

Input Status, Output
Time

I Control Signal Out

The objects are the input and output of the functions. The

control signal in and the control signal out serve as

operation identifiers. The status allows state changes to

be passed from one operation to the next, like an arithmetic

overflow passed from an arithmetic operation to a relational

operation that follows. Thus the status contains exception

conditions, machine status, and other similar information.

Time describes the incremental time (delta t) that passes

between the acceptance of the input and the completion of

the output.

18r

4.1 Formal Definition of Operations within the Algorithmic

Structure

The output and control signal out of each operation can

thus be defined as follows:

(1) output - f(input,control signal in, status, time)

(2) control signal out = f (input, control signal in,

status, time)

Furthermore, each individual operation might be broken up

into a sequence of operations. The definitions (1) and (2)

allow a recursive application in order to describe this

sequence of operations:

(3) output - fn(parameters as above) o...o fO(parameters as

above) , ncNl0

(4) control signal out = fn' (parameters as above) o...o

fO' (parameters as above)

Each operation can thus be described as a composition of

functions fn o...o fO and fn' o...o fO'.

(5) operation : ff,f'} -> {fn o...o fO,fn' o...o fO'}

4.2 Formal Definition of Operations within the Realization

The operations within the communication rules are

defined in the same way and lead to an equivalent definition

to definition (5):

(6) operation : (g,g'} -> [gn o...o gO,gn' o...o gO'}

This definition allows again a recursive application to

describe a sequence of operations.

... . z..-... . :; ", " , , i ,,- i .------ , ...- -. . "

19

4.3 Formal Definition of the Mappings from the Algorithmic

Structure into the Realization

Operations within the algorithmic structure as well

operations within the realization can be described by

functions dealing with the same set of parameters. The

functions are recursively applicable in order to describe

each operation as a sequence of operations. Furthermore, it

allows each operation within the algorithmic structure to be

viewed as a sequence of operations within the realization.

This is defined with the following mapping:

(7) M : {f,f'} -> {g,g'}

This definition grants that one can find a realization for a

given program, but not every system may provide the resources in

order to accomplish the realization for that program.

. ... ~~~~~' ,; . : - -_ 71 i. / .1 7

20

5. Examples

Two short examples are used to show the communication

and cooperation rules as applied to the program statements

of the realization of these problems.

5.1 A Matrix Multiplication Algorithm

The program for matrix multiplication (Figure 5.1) is

written in the Pascal programming language and was executed

on a UNIVAC 1100/42 system.

First, the algorithmic structure of the program will be

described. The information structure is defined by the

objects and the operations upon objects (described below).

The atomic objects are the keywords of the Pascal

program, like: program, const, var, integer, begin, end,

read, writeln, for, repeat, and until. Furthermore the

special symbols, like: = , , : , etc. and the digits are

atomic objects.

The primitive objects are the declared data types like

constants and variables of the type integer. This example

contains several primitive objects represented by the names

imax, jmax, kmax, i, j, k. These names were chosen by the

programmer.

The complex objects used in the program are array and

file. The file structures are the special Pascal files input

and output that are declared by Pascal as textfiles

consisting of primitive objects that are characters. Array

structures, defined by the programer are a, b, and c, and

consist of a fixed number of primitive objects.

. - .- . ,, . . . -, - w - ,_ .r- -- -

21

1 program matmult(input,output);
2 conat imax a 4;
3 Jmax a 3;
4 kmax a 2;
5 var i,j,k: integer;
6 a:array [l..imax,l..jmax] of integer;
7 b:array [l..jmax,l..kmax] of integer;
8 c:array [l..imax,1..kmax] of integer;
9 begin

10 {
11 READ INPUT DATA FOR MATRICES A AND B
12 1
13 writeln (' Matrix A is ');
14 for i:= 1 to imax do begin
15 for j := 1 to jmax do begin
16 read (ali,j]);
17 write (a[i,j]) end;
18 writeln end; {End of row}
19 writeln; {End of matrix A)
20 writeln ('Matrix B is ');
21 for j := 1 to imax do begin
22 for k := 1 to kmax do begin
23 read (b[j,k]);
24 write (b[j,k]) end;
25 writeln end;
26 writeln;
27 f
28 COMPUTE PRODUCT MATRIX USING THREE LOOPING CONSTRUCTS
29 1
30 i = ;
31 repeat (Beginning of row loop)
32 k :- 1;
33 while k < kmax + 1 do begin (Column loop)
34 c[i,k] := 0;
35 for j := I to jmax do {Form element of C}
36 c[i,k] := c[i,k] + a[i,j] * b[j,k];
37 k := k + 1 end; {end of column loop)
38 i := i + 1
39 until i > imax; (End of row loop}
40 {
41 OUTPUT THE PRODUCT MATRIX B
42 }
43 writeln ('Matrix C = A x B is ');
44 for i := 1 to imax do begin
45 for k := 1 to kmax do
46 write (c[i,k]);
47 writeln end;
48 end.

Figure 5.1: Matrix Multiply Program Example.

22

The arithmetic/logic operations on objects used in this

program are the arithemtic functions SUM and PRODUCT,

expressed by the arithmetic operators + and *, respectively.

Relational operations are included within the while and

until in lines 33 and 39. Structure operations are used to

select elements from the array and file structures. The read

and readln functions select elements from the structure

input, and write and writeln functions place elements into

the output structure. The Pascal selection operation for

array structures is specified by following an array

reference by a subscript, enclosed in square brackets. Thus

the individual integer elements of the arrays a, b, and c,

are selected throughout the program example.

In the control structure of the given Pascal program

the execution order of operations upon objects is

sequential. The program structure is determined by the

compound statement begin - end, which indicates that a

sequence of statements is to be executed in sequential order

(7). However, there exist repetitive statements, like

while, repeat, and for, which permit a program segment to be

repeatedly executed as long as a specified condition is

true.

Concurrent Pascal (9) allows multiple sequential

programs to interact concurrently; but no explicit parallel

operations are included in the language.

The transformation of the output from the operations in

line 35 to be used in line 46 is through the assigment to

23

the complex object c. Similarly, results of line 37 are

available to the relational operation in the while on line

33 through the use of assignment to the primitive object k.

This example (matrix multiplication) does contain an

example of implicit parallelism in the following two lines:

35 for j :I to imax do (FORM ELEMENT OF C1

36 c[i,k] : cti,k] + a[i,j] * b[j,k];

Line 36 contains an assignment to array c[i,k] that is

performed for subscripts of j ranging from one to jmax, and

selecting elements from arrays a and b. Statement 36 also

selects the element cfi,k] from array c; but is not

dependent on any other elements of c. Consequently, all of

the elements of the c array could be computed in parallel

(at the same time on multiple processing elements); but

would require the existence and use of explicit parallel

operations.

Second, the realization of the program on the UNIVAC

1100/42 system is examined. This system is a

multi-processing system and the main resources are: two

processing units, a special I/O processing element, 16

channels, and five main storage media which are organized as

random-access memories. The two processing units are

homogeneous because they have the same hardware, but they

perform different functions, t,,1 refore the system is

asymmetric. Only one processing unit is connected to the

special I/O processing element which has 16 channels

attached to the I/O devices and secondary storage, like

4 .r

24

disks and drums. Both processing units have access to the

main storage media which are composed of three 131 K primary

storages and the two 131 K extended storages.

The matrix multiply application program runs on this

system using the following resources:

Only one processing unit can be used at a time by this

program since its control structure implies sequential,

rather than parallel, execution order and the Pascal

compiler and the UNIVAC 1100 operating system used, do not

recognize and support implied parallelism. Main storage and

registers are used for containing the objects of the

algorithmic structure. The channels are used in accessing

the files named input and output, defined to the control

structure by the Pascal compiler based on their reference in

line 1.

The cooperation rules provide the paths for the

operations to be performed which deal with the parameters

input, output, control signal in, control signal out,

status, and time (defined formally in section 4.). In

writing a program one takes for granted that the desired

configuration of resources exists. A critical issue for the

computer archtitect lies in finding a close match between

the formal behavior of a program and the realization in a

computer system.

The communication rules that have been derived from the

control structure for Pascal programs are based on the

language protocols that one normally takes for granted, that

25

the execution order is implicitly serial from the first line

of the program down to the last line. Explicit changes are

imposed by the occurance of a repeat-until, a begin-end with

a for-do, a begin-end with a while-do, as in line 30 to 39,

lines 21 to 25, and lines 33 to 37, respectivly.

A second level of implied communication rules is in

line 36 where the operations + and * both appear. Pascal has

an implied hierarchy of operations (protocols) that causes

the function PRODUCT to occur before the function SUM . This

hierarchy may be changed explicitly through the use of

parenthesis. Other levels of communication rules force

completion of the selection operation before accessing the

data word from a complex object, and furthermore forces the

arithmetic operations to await the arrival of the objects

(from the RAM storage resouce to the register storage

resource in the case of the UNIVAC 1100/42 system).

The communication rules, defined formally in section

4.2. deal with the parameters input, output, control signal

in, cortrol signal out, status, and time. For example the

operation i := + In line 38, would be described as

follows:

i:=i+l

i, 1 status, i
Time

I'

2 NSO

26

where the inputs are i and 1, the output is the new value of

i, the control signal in is i := i+l, and the control signal

out is next sequential operation (NSO). In the functional

notation of equations (1) and (2):

i - g((i,l), i := i+l, status, time)

NSO - g ' (parameters as above)

Furthermore, line 38 may be recursively decomposed into:

S+

1, 1 > ieStatus, i + 1

NSO

i, i + I Status, i
> Time

with the inputs and outputs and control signals in and out

as shown. The functional notation of equations (3) and (4)

express this as:

i g, ((i'i+l),:=,s,,tf) o g*((i'l),+,so't'))

NSO g,'(param. as above) o g,(param. as above)

and the operation is:

27

operation :(g,g'} - (9 og , og' 1

Similarly, the operation:

c~i,k] :- c~i,k] + afi,j] * b~j,k]

breaks up into the following operations, where SEL denotes

the select operation and NSO stands for next sequential

operation.

I
SEL

b, j, k Status, b~j,k]
> Time

NSO

,, S EL

a, i, j Status, ati,j]
> Time

Vafi,j), bfj,k] Status, a~i,j] *b[j,kI

> Time

*4S

17

28

T SEL

c, i, k Status, c(i,k]
Time

J, NSO

+

c[], a(] * b[] Status, c(] + a[] * b[]
Time

i NSO

cI, c[] + a[] * b[] Status, c(i,k]
Time

': NSO

In viewing this theory, especially its recursive

nature, one can see that operations within the algorithmic

structure or within the realization might be composed of a

sequence of operations. The given definitions (1-6) allow a

recursively breaking up of each individual operation.

Definition 7 provides a mapping from operations within the

29

control structure into the operations within the cooperation

rules for the resources. This mapping assures that if the

necessary resources exist a certain operation can be

accomplished, otherwise the range of the mapping is empty.

With the opposite approach, it can be readily seen, an

entire program or system of programs can also be represented

as an operation.

5.2 A Bubble Sorting Algorithm (Figure 5.2)

Sorting differs significantly from matrix

multiplication but the descriptions of the algorithmic

structure and the realization of the two programs are

substantially the same. One difference is that the sorting

algorithm includes a relational operation as its principal

operation. In line 22:

if data In] < data [n-1] then begin

The relation between two adjacent elements selected from the

array data is used to determine whether the elements are in

sorted order. If they are not, the status condition from

the relational operation causes the begin-end block of the

then clause to be executed. If proper order is detected the

begin-end block of the for in line 21 is advanced to the

next value of n. The remainder of this example consists of

an information structure and control structure similar to

Example A.

The UNIVAC 1100/42 system was used for both examples.

- *-~-*-----.

II30 ..

S1 {
2 SORT ROUTINE FOR DEMONSTRATION OF ARCHITECTURES
3
4 program dsort (input,output);
5 const nmax 1 10;
6 var i,n,j,temp: integer;
7 data: array [l..nmax] of integer;
8 begin
9 f

10 READ AND ECHO INPUT DATA
11 }
12 writeln (' UNSORTED DATA ARE '1;
13 for i := 1 to nmax do begin
14 read (datati]);
15 write (datafi]) end;
16 writeln; (END OF DATA)
17 {
18 SORT LOOPS - OUTSIDE (FOR LOOP) IS FORWARD SCAN
19 - INSIDE (REPEAT-UNTIL LOOP) IS BKWD SCAN
20 }
21 for n := 2 to nmax do begin
22 if data [n] < data [n-l] then begin
23 j := n;
24 repeat
25 temp := data[j];
26 data (j] := data (j - 11;
27 data [j - 1] := temp;
28 j :=j -

29 until ((j = 1) or (data (j] > data [j - 1]))
30 end
31 end;
32 writeln (' SORTED DATA ARE:');
33 for i := 1 to nmax do begin
34 write (data [i]) end;
35 writeln
36 end.

Figure 5.2: Sort Program Example.

. - - . - - , - ----- - -- --- --

31

6. Concluding Remarks

This paper presented a framework for computer architecture

which includes a methodology for formalizing the functions

inherent in computer architeture. The artifical distinctions

between hardware, software, or firmware common in the wide

spectrum of the current state of the art in this field are

eschewed. Detailed specifications of computer architecture have

been aggregated into a number of basic constructs. The abstract

nature of these basic definitions leads to a new view of the

specifications in computer architecture. Many problems of

previous descriptions are avoided by the functional

decompositions provided by this approach. Similarly, the

composition of individual parts is accomplished by recursively

applying the basic operations. A primary benefit of this method

is its extensability which allows support for new organizations

of computer architectures utilizing recent technologies.

-. -S.- q .*---wr--~ -r--- ------------- - - *

32

Ref.erence.

(1) Shannon, C. E. and W. Weaver, The mathematical theory of

communication, University of Illinois Press, Urbana, Il, 1964

(2) Knuth, D. E., The art of computer programming, Vol. 1,

Addison- Wesley, Reading, MA, 1968.

(3) Giloi, W. K., Rechnerarchitektur, Informatik - Spektrum 3,

3-18 (1980) Springer Verlag, 1980.

(4) Backus, J., "Can programming be liberated from the von

Neumann style?w, CACM, Vol. 21, No. 8, pp. 613 - 641.

(5) Kluge, W. E., The architecture of a reduction language

machine hardware model, GMD, Bonn, Interner Bericht, 1979.

(6) Savage, J. E., The complexity of computing, John Wiley and

Sons, Inc., 1976.

(7) Schneider, G. M., et. al., An introduction to programming

and problem solving with Pascal, John Wiley and Sons, Inc.,

1978.

(8) Madnick, S. E., and J. J. Donovan, Operating Systems, McGraw

Hill, 1974

(9) Brinch Hansen, P., Concurrent Pascal, Transactions on

Software Engineering, Vol. 1, No.2, pp. 199 - 207.

- --

